Research Interests

  • Thiol-redox Signaling and Neuronal Cell Death

Alterations in the cellular redox balance regulate the activation of distinct signaling cascades leading to the progression of a variety of cell death programs. However, the exact mechanisms involved in the regulation of cell death by redox signaling are still far from being understood. In our research group we aim to elucidate the molecular mechanisms involved in the regulation of cell death progression by redox signaling. Because the intracellular thiol-disulfide (GSH/GSSG) balance is considered the major determinant of the redox status of the cell, we are particularly interested in studying how alterations in thiol homeostasis regulate the activation/inactivation of the cell death machinery during neuronal cell death.

To understand the exact regulatory role of oxidative stress in the signal transduction events leading to cell death we must determine the substrate specificity and biomolecular alterations caused by the reaction of reactive species. Proteins are likely to be the major targets for oxidative modification, as a result of their abundance in cells. Relative to other amino acids, cysteine residues are among the most sensitive to oxidation and an important cellular target or sensor of reactive species is the thiol group of the amino acid cysteine. Under mild oxidative stress, reversible oxidation of selective cysteine protein residues may serve as redox sensors and signal transducers for conveying cellular anti-stress responses. However, when encountering severe oxidative insults, cysteine thiols undergo irreversible oxidative modifications, causing protein degradation and cell death. We are interested in understanding the role of oxidative protein cysteine modifications (glutathionylateion, sulfenylation) in the regulation of the cell death machinery.

Cells defend themselves against ROS damage through specific enzymatic or non-enzymatic mechanisms. We are also interested in the role of thiol-oxidoreductases (peroxiredoxins, glutaredoxins and thioredoxins) regulating oxidative stress and cysteine oxidation during neuronal cell death.

  • Environmental Toxicity, Oxidative Stress and Cell Death Signaling

The environment represents a key contributor to human health and disease. Exposure to many toxicants such as metals and pesticides have detrimental effects on health and are considered to contribute substantially to a number of diseases of major public health significance. It has been recognized that many of the toxic effects induced by environmental stressors are mediated by regulation/induction of cell death and oxidative stress whose deregulation has been associated to several environmental diseases. The overall impact of environmental changes on the mechanisms of cell death progression is poorly understood yet the consequences of modifying/regulating them can result in a potential increased risk of developing diseases such as cancer and neurodegeneration, which are associated to alterations in cell death rates. We are interested in identifying the molecular mechanisms by which oxidative stress regulates cell death during environmental toxicity.

  • Brain Injury (Ischemia, Excitotoxicity and Edema)

Neuronal cell death is an important component of distinct pathological states including hyponatraemia, traumatic brain injury, ischemia and excytotoxic insults. Our research aims to understand the role of redox signaling in neuronal injury induced by hypoxic/ischemic conditions, excytotoxic insults and cellular stretch.

Cytotoxic edema is the result of a deregulated cell swelling of neurons and glia and the subsequent reduction in the extracellular space. We are particularly interested in characterizing the signaling events that modulate the activation of ionic/osmolyte efflux pathways under these circumstances.


The Franco laboratory, located in the Veterinary Basic Science (VBS) building, has been recently renovated and consists of one large laboratory space (1,245 square feet) and one additional cell culture room (231 square foot). The lab is well outfitted with all the equipment necessary to perform all the cell biology and molecular biology studies: biosafety cabinet, cell culture incubators, centrifuges, dissection and cell culture microscopes, water baths, power supplies, sonicator, thermocycler, water purification system, ultra-freezer, liquid-nitrogen storage system, electrophoresis chambers, shakers, electroporator and gel documentation system. In addition, the laboratory space is equipped with all the required safety equipment (e.g., eyewash stations, shower, etc.).

  • Experimental Approaches used
    • Cell biology
      • Fluorescent Imaging (Confocal microscopyand FACS)
      • Cell culture
      • Subcellular fractionation
    • Molecular Biology
      • Cloning, transfection, viral vector design
    • Biochemistry
      • Protein analysis
      • Proteomics
      • Metabolomics
    • In vivo mouse models of PD
      • MPTP
      • Paraquat
      • Histology
  • School of Veterinary Medicine and Biomedical Sciences
    • The School of Veterinary Medicine and Biomedical Sciences maintains in-house BSL-3 laboratory, histology facility, cold and warm rooms, media preparation rooms containing dishwashers, ice machines, ovens and autoclaves. Common use equipment includes a confocal microscope, scintillation counter, spectrofluoremeter, gel documentation system, Multidetection (Absorbance/Fluorescence/Luminescence) Microplate Reader, dark room with automated X-ray film developer and Real Time/PCR machine.

Funding sources

We are grateful for the funds provided by the next organizations

  • Extramural

Scientist Development Grant, Midwest Affiliate, American Heart Association. 2012-2014. Thiol redox signaling in neuronal cell death in ischemic conditions.

Centers of Biomedical Research Excellence (COBRE/NIH). Redox Biology Center. University of Nebraska Lincoln. Principal Investigator. 2009-2012. Oxidative Stress and Redox Signaling in Neuronal Cell Death.

Alzheimer's Association 2010 International Research Grant Program. 2011-2013. Copper Transport Regulates Amyloid-Beta-Induced Neurodegeneration

Basic Science. National Council for Science and Technology (CONACYT), Mexico. 2009-2012. Oxidative Post-translational Modifications Upon Environmental Stress and its Role in Cell Death.

  • Intramural

Biomedical Research Seed Grant, Office of Research, University of Nebraska-Lincoln. 2014-2015. Gene-Environment Interactions in Neurodegeneration: Bioenergetics and Redox Signaling.

Pilot Grant, Redox Biology Center, University of Nebraska-Lincoln. 2016-2017. Metabolic dysfunction induced by α-synuclein.

Layman New Directions Award, Office of Research. University of Nebraska-Lincoln. 2017-2018. Alterations in Brain Metabolism Induced by Drinking Water.

Layman Award, Office of Research. University of Nebraska-Lincoln. 2010-2011. Oxidative Protein Damage During Paraquat-induced Neurodegeneration.

Enhancing Interdisciplinary Teams. Life Sciences Grant Program of the University of Nebraska-Lincoln. 2011-2013. Gene Therapy Against Parkinson's Disease

Interdisciplinary Grants, Research Council, University of Nebraska-Lincoln. 2011-2013. Biomarkers of Environmental Stress and Oxidative Damage in Human Disease

ALZ Logo
American Heart Association
Redox LogoCONACYT Logo