For the Public
  1. Environment, Chemicals and Disease: finding exposure triggers that cause Parkinson’s and other diseases. Strategic Discussions for Nebraska 2015
  2. SOT Communique. SOT 2018 Annual Meeting (by Carla Garza)
    http://toxchange.toxicology.org/p/bl/et/blogaid=2580
    http://toxchange.toxicology.org/p/bl/et/blogaid=2572
Representative publications
  1. Franco R, Cidlowski JA. Apoptosis & Glutathione: Beyond an antioxidant. Cell Death Differ. 2009;16(10):1303-14. https://www.ncbi.nlm.nih.gov/pubmed/19662025

  1. Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular Mechanisms of Pesticide-induced Neurotoxicity and Apoptosis: Relevance to Parkinson’s disease. Chem Biol Interact. 2010; 188(2):289-300. PMCID: PMC2942983. https://www.ncbi.nlm.nih.gov/pubmed/20542017

  1. Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco R. DNA damage and autophagy. Mutat Res. 2011; 711(1-2):158-66. PMCID: PMC3105359. https://www.ncbi.nlm.nih.gov/pubmed/21419786

  1. Garcia-Garcia A, Rodriguez-Rocha H, Madayiputhiya N, Pappa A, Panayiotidis MI, Franco R. Biomarkers of Protein Oxidation in Human Disease. Curr Mol Med. 2012; 12(6):681-97. https://www.ncbi.nlm.nih.gov/pubmed/22292436

  1. Garcia-Garcia A, Zavala-Flores L, Rodriguez-Rocha H, Franco R. Thiol-redox signaling, dopaminergic cell death and Parkinson's disease. Antioxid Redox Signal. 2012; 17(12):1764-84. PMCID: PMC3474187. https://www.ncbi.nlm.nih.gov/pubmed/22369136

  1. Franco R, Cidlowski JA. Glutathione efflux and cell death. Antioxid Redox Signal. 2012; 17(12):1694-713. PMCID: PMC3474185. https://www.ncbi.nlm.nih.gov/pubmed/22656858

  1. Rodriguez-Rocha H, Garcia-Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R. Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson’s disease. Antioxid Redox Signal 2012; 17(12):1676-93. PMCID: PMC3474191. https://www.ncbi.nlm.nih.gov/pubmed/22816731

  1. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, …….Franco R, ……., Zorzano A, Zschocke J, Zuckerbraun B. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012; 8(4):445-544. PMCID: PMC3404883. https://www.ncbi.nlm.nih.gov/pubmed/22966490

  1. Rodriguez-Rocha H, Garcia-Garcia A, Pickett C, Li S, Jones J, Chen H, Webb B, Choi J, Zhou Y, Zimmerman M, Franco R. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases. Free Radic Biol Med. 2013; 61:370-83. PMCID: PMC3883883. https://www.ncbi.nlm.nih.gov/pubmed/23602909

  1. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP+-induced apoptosis but not rotenone or 6-hydroxydopamine dopaminergic cell death. Toxicol Sci. 2013; 136(1):166-82. PMCID:  PMC3829573. https://www.ncbi.nlm.nih.gov/pubmed/23997112

  1. Navarro-Yepes, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R. Antioxidant gene therapy against neuronal cell death. Pharmacol Ther. 2014; 142(2):206-30. PMCID: PMC3959583. https://www.ncbi.nlm.nih.gov/pubmed/24333264

  1. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R. Oxidative stress, redox signaling and autophagy: Cell death vs Survival. Antioxid Redox Signal. 2014; 21(1):66-85. PMCID: PMC4048575. https://www.ncbi.nlm.nih.gov/pubmed/24483238

  1. Wang F, Franco R, Skotak M, Hu G, Chandra N. Mechanical stretch exacerbates SH-SY5Y cell death induced by paraquat: mitochondrial dysfunction and oxidative stress.  Neurotoxicology. 2014; 41:54-63. PMCID: PMC3986102. https://www.ncbi.nlm.nih.gov/pubmed/24462953

  1. Lei S, Zavala-Flores L, Garcia-Garcia A, Nandakumar R, Madayiputhiya N, Huang Y, Stanton RC, Dodds ED, Powers R, Franco R. Alterations in energy/redox metabolism induced by mitochondrial and environmental toxins: A specific role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity. ACS Chem Biol. 2014; 9(9):2032-48. PMCID: PMC4168797. https://www.ncbi.nlm.nih.gov/pubmed/24937102

  1. Marshall D, Lei S, Worley B, Huang Y, Garcia-Garcia A, Franco R, Dodds ED, Powers R. Combining MS and NMR Datasets for Metabolomics Profiling. Metabolomics. 2015; 11:391-402. PMCID: PMC4354777. https://www.ncbi.nlm.nih.gov/pubmed/25774104

  1. Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet JC, Khalimonchuk O, Franco R.  Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis. 2015; 81:76-92. PMCID: PMC4459946. https://www.ncbi.nlm.nih.gov/pubmed/25497688

  2. Klionsky DJ, …….Franco R, ……., Zughaier SM. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016; 12(1):1-22. PMCID: PMC4835977. https://www.ncbi.nlm.nih.gov/pubmed/26799652

  3. Navarro-Yepes J, Annandurai A, Bradley E, Bohovych I, Yarabe B, de Jong A, Ovaa H, Zhou Y, Khalimonchuk O, Quintanilla-Vega B, Franco R. Inhibition of protein ubiquitination by paraquat and 1-methyl-4-phenylpyridinium impairs ubiquitin-dependent protein degradation pathways. Mol Neurobiol. 2016; 53(8):5229-51.. PMCID: PMC4842169. https://www.ncbi.nlm.nih.gov/pubmed/26409479

  4. Klionsky DJ, …….Franco R, ……., Zughaier SM. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016; 12(1):1-22. PMCID: PMC4835977. https://www.ncbi.nlm.nih.gov/pubmed/26799652

  5. Anandhan A, Lei S, Levytskyy R, Pappa A, Panayiotidis MI, Cerny RL, Khalimonchuk O, Powers R, Franco R. Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (α-synuclein)-environment (paraquat) interactions. Mol Neurobiol. 2017; 54(5):3825-3842 PMCID: PMC5173445. https://www.ncbi.nlm.nih.gov/pubmed/27324791

  6. Annadurai A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, Powers R, Franco R. Metabolic dysfunction in Parkinson’s disease: Bioenergetics, redox homeostasis and central carbon metabolism. Brain Res Bull. 2017; 133:12-30 PMCID: PMC5555796. https://www.ncbi.nlm.nih.gov/pubmed/28341600

  7. Powers R, Lei S, Annadurai Anandhan, Marshall DD, Worley B, Cerny RL, Dodds ED, Huang Y, Panayiotidis MI, Pappa P, Franco R. Metabolic investigations of molecular mechanisms associated with Parkinson’s disease. Metabolites. 24;7(2). pii: E22. PMCID: PMC5487993. https://www.ncbi.nlm.nih.gov/pubmed/28538683

  8. Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R, Franco R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology. 2017; 391:109-115. PMCID: PMC5681369. https://www.ncbi.nlm.nih.gov/pubmed/28655545

  9. Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal. 2018; 28(18):1669-1703. PMCID: PMC5962337. https://www.ncbi.nlm.nih.gov/pubmed/29402131

  10. Garza-Lombo C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Curr Opin Toxicol. 2018; 8:102-110 PMCID: PMC6223325. https://www.ncbi.nlm.nih.gov/pubmed/30417160

  11. Garza-Lombo C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: A mechanistic appraisal. J Biol Inorg Chem. 2019; 24(8):1305-1316 PMCID: PMC6903391. https://www.ncbi.nlm.nih.gov/pubmed/31748979

  12. Garza-Lombó C, Pappa A, Panayiotidis MI, Franco R. Redox Homeostasis, Oxidative Stress and Mitophagy. Mitochondrion. 2020; 51:105-117 PMCID: PMC7062406 https://pubmed.ncbi.nlm.nih.gov/31972372

  13. Sahoo BR, Pattnaik A, Annamalai AS, Franco R, Pattnaik AK. Mechanistic Target of Rapamycin (mTOR) Signaling Antagonizes Autophagy to Facilitate Zika Virus Replication. J Virol. 2020; 94(22):e01575-20 PMCID: PMC7592218 https://pubmed.ncbi.nlm.nih.gov/32878890

  14. Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Front Neurosci. 2020; 14:536682 PMCID: PMC7674659 https://pubmed.ncbi.nlm.nih.gov/33224019


Complete list of publications
Research ID Profile
  1. https://researcherid.com/rid/D-9470-2013
Books
  1. Oxidative Stress and Redox Signalling in Parkinson’s Disease. Editors: Franco R, Rochet JC, Doorn JA. Issues in Toxicology (Book 34) Royal Society of Chemistry. 2017. 521 pages. ISBN-10: 1782621881; DOI: 10.1039/9781782622888. http://pubs.rsc.org/en/content/ebook/978-1-78262-188-1

Book Chapters (representative)

  1. Pasantes-Morales H, Franco R. Astrocyte Cellular Swelling: Mechanisms and Relevance to Brain Edema. In: The Role of Glia in Neurotoxicity. (Aschner M., Ed) 2005. CRC Press. Chapter 10 pp. 173 – 190

  2. Rodriguez-Rocha H, Garcia-Garcia A, Franco R. Biomarkers of Oxidative Stress in Carcinogenesis. In: Cancer Biomarkers. (Georgakilas A., Ed) 2012. CRC Press. Chapter 2 pp. 23-49

  3. Franco R, Zavala-Flores L. ABCC Transporter. In: Encyclopedia of Cancer: Springer Reference (www.springerreference.com). Schwab M. (Ed.) Springer-Verlag Berlin Heidelberg, 2012. DOI: 10.1007/SpringerReference_303443 2012-02-28 20:57:09 UTC

  4. Franco R, Garcia-Garcia A, Georgakilas AG, Pappa A, Panayiotidis MI. Oxidative Stress and Cancer. In: The Molecular Basis of Oxidative Stress: Chemistry, Mechanisms, and Disease Pathogenesis (Villamena E, Ed) 2013. Wiley. Chapter 9 pp. 203-239

  5. Annadurai A, Hernandez-Franco P, Franco R. Oxidative Stress, redox homeostasis and NF-κB signaling in neurodegeneration. In: The Oxidative Stress:  Diagnostics, Prevention and Therapy Volume 2. (Hepel M, Andreescu S Eds.). vol. 1200 American Chemical Society, 2015, pp 53-90.

  6. Hernandez-Franco P, Foguth R, Annadurai A, Franco R. Oxidative Stress and Redox Signaling in the Parkinson’s Disease Brain. In: Oxidative Stress and Redox Signaling in the Parkinson’s Disease Brain. (Franco R, Doorn JA, Rochet JC Eds.). 2017. Royal Society of Chemistry, UK. Chapter 2 pp. 27-60.

  7. Hernandez-Franco P, Annadurai A, Franco R. Protein Oxidation, Quality Control Mechanisms and Parkinson’s disease. In: Oxidative Stress and Redox Signaling in Parkinson’s Disease. (Franco R, Doorn JA, Rochet JC Eds.). 2017. Royal Society of Chemistry, UK. Chapter 10 pp. 277-234.

Guest Editor Special Issues

  1. Mutation Research Cover ImageMutation Research Cover Image
    Mutation Research Cover
    Guest Editor. Special Issue in Oxidative Stress and Mechanisms of Environmental Toxicity. Published in: Mutation Research: Genetic Toxicology and Environmental Mutagenesis. Mutat Res. 2009; 674(1-2)



  2. Chemico-Biological Interactions Cover ImageChemico-Biological Interactions Cover Image
    Chemico-Biological Interactions Cover
    Guest Editor. Special Issue in Cell Death or Survival: The Double Edge Sword of Environmental and Occupational Toxicity. Chem Biol Interact. 2010; 188(2)


  3. Guest Editor. Special Issue in Challenges and opportunities for toxicology in Mexico. Toxicol Mech Methods. 2011; 21(9)

  4. ARS Cover Image from December 15, 2012ARS Cover Image from December 15, 2012
    ARS Cover
    Guest Editor. Forum Issue in Thiols in Cell Death. Antioxid Redox Signal 2012; 17(12)


  5. ARS Cover Image from 2018ARS Cover Image from 2018
    ARS Cover
    Guest Editor. Forum Issue in Redox Metabolism and Signaling in Neurological Function, Dysfunction and Aging. Antioxid Redox Signal 2018; 28(18)


  6. Current Opinion in Toxicology Cover Image from April 2018Current Opinion in Toxicology Cover Image from April 2018
    ARS Cover
    Guest Editor. Issue 8 in Metabolic Disruption in Environmental Diseases. Curr Opin Toxicol. 2018.